

Antioxidant and antimicrobial activity evaluation of polyhydroxycinnamic acid ester derivatives[†]

Somepalli Venkateswarlu, Marellapudi S Ramachandra, Alluri V Krishnaraju, Golakoti Trimurtulu & Gottumukkala V Subbaraju*

Laila Impex R & D Centre, Unit 1, Phase III, Jawahar Autonagar, Vijayawada 520 007, India

E-mail: subbarajugottumukkala@hotmail.com

Received 4 August 2004; accepted (revised) 27 April 2005

Polyhydroxycinnamic acid esters **5a-p** have been synthesized starting from the appropriately substituted benzaldehydes. The antioxidant activity of these esters has been determined by superoxide free radical scavenging activity and DPPH free radical scavenging activity. The SAR studies reveal that pyrogallol, catechol moieties are essential for good antioxidant activity and an increase in the length of alkyl chain of the ester decreases the activity. Butyl hydroxycinnamates exhibit higher antibacterial activity among the synthesized hydroxycinnamates **5a-p**, but, none of these show significant antifungal activity.

Keywords: Polyhydroxycinnamates, synthesis, antioxidant, antimicrobial, SAR studies

IPC: Int.Cl.7 C 07 C // A 61 P 31/04, 31/10

Hydroxycinnamic acid esters are widely distributed in plant kingdom and are reported as antioxidants¹⁻³. These compounds impart nutriceutical traits to foods by way of their abilities to serve as cellular antioxidants, anti-inflammatory agents or inhibitors of enzymes involved in cell proliferation. These activities are important in ameliorating chronic diseases such as cancer, arthritis, and cardiovascular diseases, which in some cases may be caused by free radicals⁴.

Free radicals have also been implicated in a number of pathological processes, which include aging, inflammation, reoxygenation of ischemic tissues, atherosclerosis, and various kinds of cancer. The harmful free radicals such as hydroxyl (OH⁻) and peroxy (ROO[·]), and the superoxide anion (O₂[·]) are constantly being produced as a result of metabolic reactions in living systems. Living systems are protected from oxidative damage of these reactive species by enzymes such as superoxide dismutase and glutathione peroxidase. Antioxidant compounds such as ascorbic acid, tocopherols, and carotenoids⁴ and natural phenolic compounds have been reported to remove free radicals and protect the structural integrity of cells and tissues⁵⁻⁸.

Several synthetic methods are available for the synthesis of cinnamic acid esters and the important methods are: (i) Esterification of corresponding cinnamic acids with alcohols using the reagents like DCC, acids^{9,10}, (ii) Wittig reaction^{11,12} between aldehydes and triphenylphosphoranes and the modified procedure, Wittig-Horner sonochemical reaction¹³ conditions, and (iii) Reformatsky reaction¹⁴ of α -haloesters with aromatic aldehydes or ketones in presence of zinc and diethylaluminum chloride.

In view of the importance of natural antioxidants, we have carried out synthesis and the evaluation of antioxidant activity of a series of cinnamic acid esters **5a-p** having hydroxyls, methoxyls on the benzene ring and methyl (C₁, **5a**, **5e**, **5g**, **5k** and **5m**), 1-butyl (C₄, **5b**, **5f**, **5h**, **5l** and **5n**), 1-tetradecyl (C₁₄, **5c**, **5i** and **5o**), 1-eicosanyl (C₂₀, **5d**, **5j** and **5p**) as alkyl part to obtain structure-activity relationships. The antioxidant activity of these compounds was determined by superoxide free radical scavenging activity using nitroblue tetrazolium (NBT) method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and the results are presented in this paper.

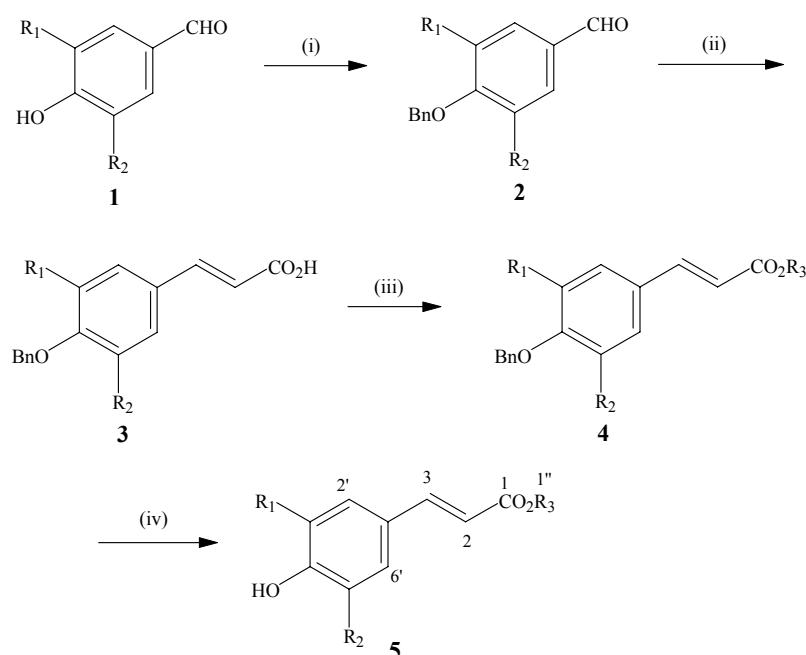
Further, the antimicrobial activity was also screened for these compounds against the Gram-negative organisms (*Escherichia coli*, *Pseudomonas*

[†] Laila Impex communication # 16

aeruginosa), Gram-positive organisms (*Bacillus subtilis*, *Staphylococcus aureus*), *Aspergillus wentii* and *Aspergillus niger*.

Results and Discussion

Synthesis


The desired cinnamic acid esters have been synthesized by the reaction of appropriately substituted benzaldehydes with malonic acid followed by esterification.

The hydroxyl groups on the starting benzaldehydes **1** were protected as benzyl ethers using benzyl bromide and K_2CO_3 as a base¹⁵. Condensation of benzyloxybenzaldehydes **2** with malonic acid under Knoevenagel-Doebner conditions¹⁶, gave the corresponding benzyloxybenzoic acids **3**. The acids **3** were converted into the corresponding esters **4** by the standard esterification methods¹⁷ using appropriate alcohols. Debenzylation of these esters **4** using $AlCl_3$

and N,N-dimethylaniline¹⁸ (**Scheme I**) gave the desired polyhydroxycinnamic acid esters **5a-p**. The structures of these esters **5a-p** were confirmed by their physical and spectral (IR, NMR and mass) data.

Antioxidative activity

The antioxidant activity of the esters **5a-p** was determined by two different mechanisms: (a) Superoxide free radical scavenging ability (NBT method)^{19,20}, and (b) DPPH free radical scavenging activity²¹. The IC_{50} values of the esters are noted in **Table I**. From the superoxide radical scavenging data, it is evident that an increase in the number of hydroxyls on the aromatic ring enhanced the antioxidant activity (**5a**, IC_{50} 465 μM ; **5g**, IC_{50} 19 μM ; **5m**, IC_{50} 4 μM), whereas the increase in the ester chain length diminishes the antioxidant activity (**5m**, IC_{50} 4 μM ; **5n**, IC_{50} 4 μM ; **5o**, IC_{50} 91 μM ; **5p**, IC_{50} 108 μM). Other oxygenated substitutions like OCH_3

Compd	R ₁	R ₂	R ₃	Compd	R ₁	R ₂	R ₃
5a	H	H	CH ₃	5i	OH	H	C ₁₄ H ₂₉
5b	H	H	C ₄ H ₉	5j	OH	H	C ₂₀ H ₄₁
5c	H	H	C ₁₄ H ₂₉	5k	OCH ₃	OCH ₃	CH ₃
5d	H	H	C ₂₀ H ₄₁	5l	OCH ₃	OCH ₃	C ₄ H ₉
5e	OCH ₃	H	CH ₃	5m	OH	OH	CH ₃
5f	OCH ₃	H	C ₄ H ₉	5n	OH	OH	C ₄ H ₉
5g	OH	H	CH ₃	5o	OH	OH	C ₁₄ H ₂₉
5h	OH	H	C ₄ H ₉	5p	OH	OH	C ₂₀ H ₄₁

(i) Benzyl bromide, K_2CO_3 , acetone, reflux, 4 hr, 85-90% (ii) $CH_2(COOH)_2$, pyridine, piperidine, 80-90°C, 3 hr, 90-95% (iii) H^+ , R-OH, reflux, 2 hr, 60-80% (iv) $AlCl_3$, N,N-dimethylaniline, 50-60%.

Scheme I

Table I — Antioxidant activity of polyhydroxycinnamic acid esters **5a-p**

Compd	Superoxide scavenging activity (IC ₅₀ μ M)	DPPH radical scavenging activity (IC ₅₀ μ M)
5a	465	>100
5b	447	>100
5c	416	>100
5d	477	>100
5e	399	41
5f	512	51
5g	19	10
5h	32	11
5i	68	11
5j	98	13
5k	205	31
5l	571	38
5m	4	9
5n	4	9
5o	91	9
5p	108	10
BHA	966	18
BHT	381	19
Vitamin C	852	14
Vitamin E	726	>500

also contribute positively to the antioxidant activity, as illustrated by increase in antioxidant activity with the increase in the number of OCH₃ groups. But, the contribution from OCH₃ is markedly low compared to that from a free phenolic group (**5e**, IC₅₀ 399 μ M and **5g**, IC₅₀ 19 μ M). Other subgroups also show similar trend in activity variation with chain length of alkyl part (**5a-d**, **5e**, **5f**, **5g-j**, **5k** and **5l**). Interestingly, the trihydroxycinnamates **5m-p** synthesized for the first time showed higher antioxidant activity compared to the commercially available antioxidants like BHA, BHT, vitamin-E and vitamin C (**Table I**).

Antibacterial activity

The antibacterial activity of the hydroxycinnamates **5a-p** was carried out by the cylinder-plate (agar-cup plate) diffusion method²² against the Gram-negative organisms (*Escherichia coli*, *Pseudomonas aeruginosa*) and Gram-positive organisms (*Bacillus subtilis*, *Staphylococcus aureus*).

The data (**Table II**) revealed that *n*-butyl esters of the cinnamic acids exhibited potent antimicrobial activity among the hydroxycinnamates. Dihydroxy

Table II — Antibacterial activity of polyhydroxycinnamates **5a-p** at a concentration of 500 μ g/ 0.05 mL
Zone of inhibition (mm)

Compd	<i>E. coli</i>	<i>P. aeruginosa</i>	<i>B. subtilis</i>	<i>S. aureus</i>
5a	11.5	—	10.5	8.0
5b	12.0	12.5	13.5	14.0
5f	10.5	9.5	12.5	10.0
5g	12.5	—	13.0	14.0
5h	14.0	—	15.5	—
5l	8.0	8.0	8.0	10.5
5m	11.0	13.0	10.5	12.0
5n	13.0	13.0	15.5	14.5

— No significant antibacterial activity

and trihydroxy butyl cinnamates (**5h** and **5n**) exhibited strongest antimicrobial activity (15.5 mm) against the Gram-negative organism *B. subtilis* at a concentration of 500 μ g/0.05 mL. The long chain, *n*-tetradecyl and *n*-eicosanyl, esters of the hydroxycinnamates did not exhibit any significant activity even at a concentration of 500 μ g/0.05 mL.

Antifungal activity

The hydroxycinnamates **5a-p** were screened for their antifungal activity against the organisms, such as *Aspergillus wentii* and *Aspergillus niger*, by cylinder-plate method (agar cup-plate)²², as described for the evaluation of antibacterial activity. The study revealed that hydroxycinnamates do not possess any significant antifungal activity even at a concentration of 500 μ g/ 0.05 mL.

Materials and Methods

The test organisms for the antimicrobial activity studies, *Escherichia coli*, *Pseudomonas aeruginosa* (Gram-negative), *Bacillus subtilis*, *Staphylococcus aureus* (Gram-positive), *Aspergillus wentii* and *Aspergillus niger* were obtained from National Collection of Industrial Microorganism, Pune, India.

Experimental Section

Melting points were recorded on a V Scientific melting point apparatus, in open capillaries and are uncorrected. IR spectra were recorded on a Perkin-Elmer BX1 FTIR spectrophotometer; ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra on a Varian Gemini 400 MHz NMR spectrometer (chemical shifts in δ , ppm and coupling constants, J in Hz); and mass

spectra on Agilent 1100 Series LC/MSD. The elemental analysis was carried out on a Vario El Elementar instrument. Column chromatography was carried out using ACME silica gel (100-200 mesh/finer than 200 mesh).

General procedure for the preparation of benzyloxybenzaldehydes 2. A mixture of hydroxybenzaldehydes (10 mmoles), benzyl bromide (13 mole equivalents for each OH group), potassium carbonate (20 mole equivalents for each OH group) and acetone (25 mL) was heated under reflux for 4 hr. After completion of reaction, the solid was filtered off and the solvent was evaporated *in vacuo*. The residue was diluted with cold water and extracted with diethyl ether. The combined ether layer was washed with water, brine and dried over sodium sulfate. The residue obtained after removal of the solvent was purified by silica gel column chromatography to give the benzyloxybenzaldehydes 2 (yield 85-90%).

General procedure for the preparation of benzyloxcinnamic acids 3. A mixture of benzyloxybenzaldehyde 2 (5 mmoles), malonic acid (12 mmoles), pyridine (30 mmoles) and piperidine (0.25 mL) was heated on a water-bath (90-95°C) for 3 hr. The reaction mixture was heated under reflux for further 5 min and allowed to cool to rt. The cooled reaction mixture was poured into excess dil. HCl (50 mL, 2N). The precipitated solid was filtered, washed with cold water and dried to give the corresponding cinnamic acids 3 (yield 90-95%).

General procedure for the preparation of benzyloxcinnamic acid esters 4. A mixture of the acid 3 (5 mmoles), alcohol (20 mL), and sulfuric acid (1 mL) was refluxed for 2 hr. The cooled reaction mixture was poured into cold water and extracted with chloroform. The chloroform layer was washed with water, 10% sodium bicarbonate, brine and dried over sodium sulfate. The residue obtained after evaporation of the solvent was chromatographed over silica gel column to give the corresponding esters 4 (yield 60-80%).

General procedure for the debenzylation of esters 4 into 5. To a mixture of the benzyloxcinnamate 4 (1 mmole), N,N-dimethylaniline (3 mole equivalents for each benzyloxy group) and dichloromethane (25 mL) was added aluminum chloride (2 mole equivalents for each benzyloxy group) at 0°C and the reaction mixture was stirred at 0-5°C for 2 hr. The reaction mixture was quenched with 1N HCl (30 mL) and extracted with ethyl acetate. The organic layer was washed with 10% sodium bicarbonate,

brine and dried over sodium sulfate. The residue obtained after evaporation of the solvent was chromatographed over silica gel column to give the corresponding esters 5 (yield 50-60%) and the physical and spectral data are presented below.

Methyl 4-hydroxycinnamate 5a: m.p. 138-40°C (lit.²³ m.p. 136°C); IR (neat): 3382, 1693, 1634, 1604, 986 cm⁻¹; ¹H NMR (CDCl₃): δ 3.92 (3H, s, H-1''), 5.73 (1H, s, Ar-OH), 6.43 (1H, d, *J*=16.0 Hz, H-2), 7.01 (2H, d, *J*=8.4 Hz, H-3', 5'), 7.55 (2H, d, *J*=8.4 Hz, H-2', 6'), 7.76 (1H, d, *J*=16.0 Hz, H-3); EIMS (%): m/z 179 (M+H, 9), 178 (M⁺, 83), 147 (100), 120 (51), 91 (29) and 66 (22).

1-Butyl 4-hydroxycinnamate²⁴ 5b: m.p. 72-74°C; IR (neat): 3373, 2959, 1673, 1636, 1603, 978 cm⁻¹; ¹H NMR (CDCl₃): δ 0.89 (3H, t, *J*=7.4 Hz, H-4''), 1.32-1.41 (2H, m, H-3''), 1.58-1.65 (2H, m, H-2''), 4.14 (2H, t, *J*=6.7 Hz, H-1''), 5.96 (1H, s, Ar-OH), 6.23 (1H, d, *J*=16.0 Hz, H-2), 6.79 (2H, d, *J*=8.5 Hz, H-3', 5'), 7.35 (2H, d, *J*=8.5 Hz, H-2', 6'), 7.56 (1H, d, *J*=16.0 Hz, H-3); LCMS (ESI – Negative mode): m/z 219 (M-H)⁻.

1-Tetradecyl 4-hydroxycinnamate 5c: m.p. 88-90°C; IR (neat): 3382, 2924, 1674, 1603 cm⁻¹; ¹H NMR (CDCl₃): δ 0.88 (3H, t, *J*=6.8 Hz, H-14''), 1.26-1.42 (22H, m, H-3''-13''), 1.64-1.73 (2H, m, H-2''), 4.19 (2H, t, *J*=6.7 Hz, H-1''), 5.56 (1H, s, Ar-OH), 6.30 (1H, d, *J*=15.9 Hz, H-2), 6.84 (2H, d, *J*=8.5 Hz, H-3', 5'), 7.42 (2H, d, *J*=8.5 Hz, H-2', 6'), 7.62 (1H, d, *J*=15.9 Hz, H-3); ¹³C NMR (CDCl₃): δ 168.1, 158.1, 144.7, 130.0, 127.1, 116.0, 115.5, 65.0, 32.0, 29.7-28.8, 26.0, 22.7, 14.1; LCMS (ESI – Negative mode): m/z 359 (M-H)⁻; Anal. Calcd for C₂₃H₃₆O₃: C, 76.67; H, 10.00. Found: C, 76.65; H, 10.28%.

1-Eicosanyl 4-hydroxycinnamate²⁵ 5d: m.p. 90-92°C; IR (KBr): 3383, 2922, 1674, 1603, 981 cm⁻¹; ¹H NMR (CDCl₃): δ 1.00 (3H, t, *J*=6.8 Hz, H-20''), 1.35-1.45 (34H, m, H-3''-19''), 1.78-1.86 (2H, m, H-2''), 4.31 (2H, t, *J*=6.7 Hz, H-1''), 5.44 (1H, s, Ar-OH), 6.43 (1H, d, *J*=16.0 Hz, H-2), 6.96 (2H, d, *J*=8.5 Hz, H-3', 5'), 7.56 (2H, d, *J*=8.5 Hz, H-2', 6'), 7.75 (1H, d, *J*=16.0 Hz, H-3); EIMS (%): m/z 444 (M⁺, 17), 166 (45), 164 (100), 147 (52), 121 (24) and 107 (20).

Methyl 4-hydroxy-3-methoxycinnamate 5e: m.p. 58-60°C (lit.²⁶ m.p. 63-64°C); IR (KBr): 3398, 2946, 1701, 1638, 1602, 1680, 981 cm⁻¹; ¹H NMR (CDCl₃): δ 3.79 (3H, s, H-1''), 3.92 (3H, s, Ar-OCH₃), 5.91 (1H, s, Ar-OH), 6.29 (1H, d, *J*=15.9 Hz, H-2), 6.92 (1H, d, *J*=8.2 Hz, H-5'), 7.02 (1H, d, *J*=1.8 Hz, H-2'), 7.07 (1H, dd, *J*=8.2, 1.8 Hz, H-6'),

7.62 (1H, d, $J=15.9$ Hz, H-3); LCMS (ESI – Negative mode): m/z 207 (M-H)⁻.

1-Butyl 4-hydroxy-3-methoxycinnamate²⁴ 5f: m.p. 46-48°C; IR (neat): 3396, 2960, 1702, 1634, 1603, 980 cm⁻¹; ¹H NMR (CDCl₃): δ 0.96 (3H, t, $J=7.4$ Hz, H-4''), 1.39-1.48 (2H, m, H-3''), 1.64-1.72 (2H, m, H-2''), 3.92 (3H, s, Ar-OCH₃), 4.20 (2H, t, $J=6.7$ Hz, H-1''), 5.90 (1H, s, Ar-OH), 6.29 (1H, d, $J=15.9$ Hz, H-2), 6.91 (1H, d, $J=8.2$ Hz, H-5''), 7.03 (1H, d, $J=1.7$ Hz, H-2''), 7.07 (1H, dd, $J=8.2, 1.7$ Hz, H-6''), 7.60 (1H, d, $J=15.9$ Hz, H-3); LCMS (ESI – Negative mode): m/z 249 (M-H)⁻.

Methyl 3,4-dihydroxycinnamate 5g: m.p. 156-58°C (lit.²⁷ m.p. 161-63°C); IR (neat): 3300, 1680, 1630, 1600, 960 cm⁻¹; ¹H NMR (CDCl₃): δ 3.92 (3H, s, H-1''), 5.69 (1H, s, Ar-OH), 5.79 (1H, s, Ar-OH), 6.39 (1H, d, $J=16.0$ Hz, H-2), 7.00 (1H, d, $J=8.2$ Hz, H-5''), 7.14 (1H, d, $J=8.2$ Hz, H-6''), 7.20 (1H, s, H-2''), 7.71 (1H, d, $J=16.0$ Hz, H-3); EIMS (%): m/z 194 (M⁺, 73), 164 (44), 135 (54), 134 (100), 133 (94), 124 (5), 120 (4) and 110 (12).

1-Butyl 3,4-dihydroxycinnamate 5h: m.p. 112-14°C (lit.²⁷ m.p. 110-11°C); IR (neat): 3489, 2953, 1686, 1639, 1604, 974 cm⁻¹; ¹H NMR (CDCl₃): δ 0.96 (3H, t, $J=7.4$ Hz, H-4''), 1.38-1.48 (2H, m, H-3''), 1.65-1.72 (2H, m, H-2''), 4.21 (2H, t, $J=6.7$ Hz, H-1''), 6.16 (1H, br s, Ar-OH), 6.27 (1H, d, $J=15.9$ Hz, H-2), 6.45 (1H, br s, Ar-OH), 6.88 (1H, d, $J=8.2$ Hz, H-5''), 7.00 (1H, dd, $J=8.2, 1.8$ Hz, H-6''), 7.12 (1H, d, $J=1.8$ Hz, H-2''), 7.59 (1H, d, $J=15.9$ Hz, H-3); LCMS (ESI – Negative mode): m/z 235 (M-H)⁻.

1-Tetradecyl 3,4-dihydroxycinnamate²⁸ 5i: m.p. 116-18°C; IR (KBr): 3481, 2920, 1684, 1605, 975, 863 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 0.86 (3H, t, $J=6.8$ Hz, H-14''), 1.10-1.40 (22H, m, H-3''-13''), 1.59-1.64 (2H, m, H-2''), 4.11 (2H, t, $J=6.6$ Hz, H-1''), 6.25 (1H, d, $J=15.9$ Hz, H-2), 6.76 (1H, d, $J=8.1$ Hz, H-5''), 6.99 (1H, dd, $J=8.1, 1.9$ Hz, H-6''), 7.04 (1H, d, $J=1.9$ Hz, H-2''), 7.46 (1H, d, $J=15.9$ Hz, H-3), 9.10 (1H, br s, Ar-OH), 9.54 (1H, br s, Ar-OH); ¹³C NMR (DMSO-*d*₆): δ 166.5, 148.4, 145.6, 144.9, 125.6, 121.2, 115.7, 114.8, 114.9, 63.7, 31.3, 29.1-28.2, 25.4, 22.1, 13.9; LCMS (ESI – Negative mode): m/z 375 (M-H)⁻; Anal. Calcd for C₂₃H₃₆O₄: C, 73.40; H, 9.57. Found: C, 73.87; H, 9.43%.

1-Eicosanyl 3,4-dihydroxycinnamate 5j: m.p. 112-14°C (lit.¹⁵ m.p. 109-10°C); IR (KBr): 3479, 2919, 1683, 1605, 975 cm⁻¹; ¹H NMR (CDCl₃): δ 0.88 (3H, t, $J=6.8$ Hz, H-20''), 1.26-1.39 (34H, m, H-3''-19''), 1.68-1.71 (2H, m, H-2''), 4.18 (2H, t, $J=6.7$ Hz,

H-1''), 5.49 (1H, s, Ar-OH), 5.63 (1H, s, Ar-OH), 6.27 (1H, d, $J=15.9$ Hz, H-2), 6.87 (1H, d, $J=8.2$ Hz, H-5''), 7.02 (1H, d, $J=8.2$ Hz, H-6''), 7.08 (1H, br s, H-2''), 7.56 (1H, d, $J=15.9$ Hz, H-3); EIMS (%): m/z 461 (M⁺, 15), 460 (M⁺, 47), 181 (54), 180 (28), 179 (100), 163 (56), 135 (18), 134 (10) and 123 (17).

Methyl 4-hydroxy-3,5-dimethoxycinnamate 5k: m.p. 92-94°C (lit.²⁹ m.p. 90-92°C); IR (neat): 3417, 1704, 1604, 1633, 830 cm⁻¹; ¹H NMR (CDCl₃): δ 3.79 (3H, s, H-1''), 3.91 (6H, s, 2 \times Ar-OCH₃), 5.85 (1H, br s, Ar-OH), 6.29 (1H, d, $J=15.9$ Hz, H-2), 6.77 (2H, s, H-2', 6''), 7.60 (1H, d, $J=15.9$ Hz, H-3); LCMS (ESI – Negative mode): m/z 237 (M-H)⁻.

1-Butyl 4-hydroxy-3,5-dimethoxycinnamate³⁰ 5l: m.p. 84-86°C; IR (neat): 3419, 2960, 1703, 1634, 1603, 980 cm⁻¹; ¹H NMR (CDCl₃): δ 0.97 (3H, t, $J=7.0$ Hz, H-4''), 1.21-1.83 (4H, m, H-2'', 3''), 3.91 (6H, s, 2 \times Ar-OCH₃), 4.21 (2H, t, $J=7.0$ Hz, H-1''), 6.30 (1H, d, $J=15.9$ Hz, H-2), 6.77 (2H, s, H-2', 6''), 7.59 (1H, d, $J=15.9$ Hz, H-3); LCMS (ESI – Negative mode): m/z 279 (M-H)⁻.

Methyl 3,4,5-trihydroxycinnamate³¹ 5m: m.p. 188-90°C; IR (KBr): 3392, 1673, 1605, 974 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 3.72 (3H, s, H-1''), 6.25 (1H, d, $J=15.6$ Hz, H-2), 6.74 (2H, s, H-2', 6''), 7.46 (1H, d, $J=15.6$ Hz, H-3); ¹³C NMR (acetone-*d*₆): δ 167.9, 146.7, 146.2, 136.7, 126.3, 115.2, 108.3, 51.5; LCMS (ESI – Negative mode): m/z 209 (M-H)⁻.

1-Butyl 3,4,5-trihydroxycinnamate 5n: m.p. 146-48°C; IR (KBr): 3468, 2960, 1694, 1611, 969 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 0.92 (3H, t, $J=7.4$ Hz, H-4''), 1.33-1.42 (2H, m, H-3''), 1.58-1.65 (2H, m, H-2''), 4.12 (2H, t, $J=6.6$ Hz, H-1''), 6.16 (1H, d, $J=15.8$ Hz, H-2), 6.60 (2H, s, H-2', 6''), 7.38 (1H, d, $J=15.8$ Hz, H-3); ¹³C NMR (DMSO-*d*₆): δ 167.5, 145.6, 145.3, 136.0, 124.7, 114.4, 107.6, 64.0, 30.0, 18.5, 13.2; LCMS (ESI – Negative mode): m/z 251 (M-H)⁻; Anal. Calcd for C₁₃H₁₆O₅: C, 61.90; H, 6.35. Found: C, 61.67; H, 6.28%.

1-Tetradecyl 3,4,5-trihydroxycinnamate 5o: m.p. 96-98°C; IR (KBr): 3476, 2922, 1668, 1609, 978, 835 cm⁻¹; ¹H NMR (acetone-*d*₆): δ 1.01 (3H, t, $J=6.7$ Hz, H-14''), 1.30-1.50 (22H, m, H-3''-13''), 1.78-1.85 (2H, m, H-2''), 4.27 (2H, t, $J=6.7$ Hz, H-1''), 6.35 (1H, d, $J=15.8$ Hz, H-2), 6.85 (2H, s, H-2', 6''), 7.59 (1H, d, $J=15.8$ Hz, H-3); ¹³C NMR (acetone-*d*₆): δ 167.4, 146.7, 145.8, 136.6, 126.7, 116.0, 108.5, 64.6, 32.6, 30.3-29.2, 26.6, 23.2, 14.3; LCMS (ESI – Negative mode): m/z 391 (M-H)⁻; Anal. Calcd for C₂₃H₃₆O₅: C, 70.41; H, 9.18. Found: C, 69.98; H, 9.56%.

1-Eicosanyl 3,4,5-trihydroxycinnamate 5p: m.p. 110-12°C; IR (KBr): 3452, 2918, 1679, 1611, 976, 834 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 0.86 (3H, t, *J*=6.7 Hz, H-20''), 1.15-1.45 (34H, m, H-3''-19''), 1.60-1.64 (2H, m, H-2''), 4.10 (2H, t, *J*=6.7 Hz, H-1''), 6.15 (1H, d, *J*=15.8 Hz, H-2), 6.59 (2H, s, H-2', 6'), 7.37 (1H, d, *J*=15.8 Hz, H-3); ¹³C NMR (DMSO-*d*₆): δ 166.4, 146.1, 145.3, 136.4, 124.4, 114.0, 107.6, 63.6, 31.3, 29.5-28.7, 28.3, 25.4, 22.1, 13.8; LCMS (ESI – Negative mode): m/z 475 (M-H)⁻; Anal. Calcd for C₂₉H₄₈O₅: C, 73.11; H, 10.08. Found: C, 72.50; H, 10.35%.

Biological Tests

Superoxide and DPPH radical scavenging activities of hydroxycinnamates **5a-p** were determined by the methods of McCord¹⁹ and Wang *et al.*²¹ respectively. The antimicrobial assay of the hydroxycinnamates was determined using the standard procedure²².

Conclusions

The polyhydroxycinnamic acid esters **5a-p** were synthesized starting from the corresponding benzyl-oxybenzaldehydes in three steps. The antioxidant activity of these esters was determined by superoxide scavenging activity and DPPH free radical scavenging activity. The SAR studies reveal that pyrogallol and catechol moieties are essential for good antioxidant activity and an increase in the length of alkyl chain of the ester decreases the activity. The antimicrobial screening results suggest that the butyl hydroxycinnamates exhibited better antibacterial activity against the Gram-negative organism *B. subtilis* and no hydroxycinnamate exhibited significant antifungal activity against the microorganisms, *Aspergillus wentii* and *Aspergillus niger*, even at a concentration of 500 µg/0.05 mL.

Acknowledgement

Authors are thankful to Sri G Ganga Raju, Chairman and Mr G Rama Raju, Director, Laila Impex for encouragement.

References

- 1 Wang H, Nair M G, Strasburg G M, Booren A M & Gray J I, *J Nat Prod*, 62, 1999, 86.
- 2 Tada M, Matsumoto R, Yamaguchi H & Chiba K, *Biosci Biotechnol Biochem*, 60, 1996, 1093.
- 3 Larson R A, *Phytochemistry*, 27, 1988, 969.
- 4 Halliwell B & Gutteridge J M C, *Biology and Medicine*, (Oxford University Press, Oxford), 1985.
- 5 Foti M, Piattelli M, Baratta M T & Ruberto G, *J Agric Food Chem*, 44, 1996, 497.
- 6 Chung S -K, Osawa T & Kawakishi S, *Biosci Biotechnol Biochem*, 61, 1997, 118.
- 7 Silva F A M, Borges F, Guimaraes C, Lima J F C, Matos C & Reis S, *J Agric Food Chem*, 48, 2000, 2122.
- 8 Chen J H & Ho C -T, *J Agric Food Chem*, 45, 1997, 2374.
- 9 (a) Talapatra B, Das A K & Talapatra S K, *Phytochemistry*, 28, 1989, 290.
(b) Ballesteros J F, Sanz M J, Ubeda A, Miranda M A, Iborra S, Paya M & Alcaraz M J, *J Med Chem*, 38, 1995, 2794.
(c) Bernards M A & Lewis N G, *Phytochemistry*, 31, 1992, 3409.
- 10 (a) Burke T R Jr, Fesen M R, Mazumder A, Wang J, Carothers A M, Grunberger D, Driscoll J, Kohn K & Pommier Y, *J Med Chem*, 38, 1995, 4171.
(b) Gu W, Jing X, Pan X, Chan A S C & Yang T -K, *Tetrahedron Lett*, 41, 2000, 6079.
(c) Sugiura M, Naito Y, Yamaura Y, Fukaya C & Yokoyama K, *Chem Pharm Bull*, 37, 1989, 1039.
- 11 Buddurs J, *Angew Chem, Int Ed*, 11, 1972, 1041.
- 12 Huang Y -Z, Shi L -L, Li S -W & Wen X -Q, *J Chem Soc, Perkin Trans 1*, 1989, 2397.
- 13 Bankova V S, *J Nat Prod*, 53, 1990, 821.
- 14 Furstner A, *Synthesis*, 1989, 571.
- 15 Venkateswarlu S, Ramachandra M S & Subbaraju G V, *Asian J Chem*, 13, 2001, 911.
- 16 Furniss B S, Hannaford A J, Rogers V, Smith P W G & Tatchell A R, *Vogel's textbook of practical Organic Chemistry*, 4th edn, (ELBS, UK), 1978, 802.
- 17 Haslam E, *Tetrahedron*, 36, 1980, 2409.
- 18 Akiyama T, Hirofumi H & Ozaki S, *Tetrahedron Lett*, 32, 1991, 1321.
- 19 McCord J M & Fridovich I, *J Biol Chem*, 244, 1969, 6049.
- 20 Venkateswarlu S, Raju M S S & Subbaraju G V, *Biosci Biotechnol Biochem*, 66, 2002, 2236.
- 21 Wang M, Jin Y & Ho C -T, *J Agric Food Chem*, 47, 1999, 3974.
- 22 Cooper K E & Kavanagh F(Eds), In: *Analytical Microbiology*, 2, 1972, 13.
- 23 Klosterman H J, Smith F & Clagett C O, *J Am Chem Soc*, 77, 1955, 420.
- 24 Tawata S, Taira S, Kobamoto N, Zhu J, Ishihara M & Toyama S, *Biosci Biotechnol Biochem*, 60, 1996, 909.
- 25 Tori M, Ohara Y, Nakashima K & Sono M, *Fitoterapia*, 71, 2000, 353.
- 26 *Dictionary of Natural Products*, edited by J Buckingham, Vol 3, (Chapman-Hall, London), 1994, 3083.
- 27 Etzenhouser B, Hansch C, Kapur S & Selassie C D, *Bioorg Med Chem*, 9, 2001, 199.
- 28 Abd El Hady F K & Hegazi A G, *Z Naturforsch*, 57c, 2002, 386.
- 29 *Dictionary of Natural Products*, edited by J Buckingham, Vol 3, (Chapman-Hall, London), 1994, 2951.
- 30 Chawla A S, Singh M, Kumar D & Kumar M, *Indian J Pharm Sci*, 55, 1993, 184.
- 31 Bourne E J, Macleod N J & Pridham J B, *Phytochemistry*, 2, 1963, 225.